anonymous
  • anonymous
Show that g(x,y)= (x^2-y^2)/(x^2+1) is a continuous function. I know from regular calc that if I have a composite function where both functions are continuous, then it is continuous. I know that both are continuous by looking at the graph, but how do I prove so otherwise?
MIT 18.02 Multivariable Calculus, Fall 2007
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

kyosuke
  • kyosuke
evalúa la función con esto \[\lim_{x,y \rightarrow a,b}g(x,y)=g(a,b)\] pero principalmente recuerda que g(x,y) al se racional es el cociente de dos polinomios y todos los polinomios en R^2 son continuos por tanto "una función racional es continua en todo su dominio".

Looking for something else?

Not the answer you are looking for? Search for more explanations.