ksaimouli
  • ksaimouli
y^4+(1/16y^4)+1/2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ksaimouli
  • ksaimouli
\[y^4+\frac{ 1 }{ 16y^4 }+\frac{ 1 }{ 2 }\]
ksaimouli
  • ksaimouli
perfect square
ksaimouli
  • ksaimouli
@Jonask

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

phi
  • phi
you could make 16y^4 the common denominator and add up the terms the denominator is a perfect square. Does the numerator factor?
ksaimouli
  • ksaimouli
is their any easy way instead of just taking common denominator
ksaimouli
  • ksaimouli
@zepdrix
ksaimouli
  • ksaimouli
i know a^2+2ab+b^2
phi
  • phi
It is not that hard
phi
  • phi
16 y^8 + 1 + 8 y^4
ksaimouli
  • ksaimouli
=(a+b)^2
phi
  • phi
re-arrange as 16 y^8 + 8 y^4 + 1 if you let y^4 = x, this is also 16x^2 + 8x +1
anonymous
  • anonymous
i just tried\[(y^2+\frac{1}{4y^2})^2\]
phi
  • phi
if it is square your only hope is (4x+1)^2 which works
ksaimouli
  • ksaimouli
is that =0 because what happened to common denominator
ksaimouli
  • ksaimouli
(4x^4+1)^2
anonymous
  • anonymous
is it not true to say\[(y^2+\frac{1}{4y^2})^2=y^4+2(y^2)(\frac{1}{4y^2})+\frac{1}{16y^4}=y^4+\frac{1}{2}+\frac{1}{16y^4}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.