Using the given zero, find all other zeros of f(x). -2i is a zero of f(x) = x^4 - 45x^2 - 196

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Using the given zero, find all other zeros of f(x). -2i is a zero of f(x) = x^4 - 45x^2 - 196

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The imaginary zeros come in conjugate pairs, so -2i and 2i are zeros. To be zeros, they must be part of a (x^2 + a^2) expression, and plugging a = 2i into that gives (x^2 + 4). Now just divide the original polynomial by (x^2+4) and factor what is left.
|dw:1359424829774:dw|7 is a zero
|dw:1359424892177:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

-7 is the second zero
|dw:1359424935901:dw|
|dw:1359425047885:dw|
ok found my mistake (-2i)(98i) is +196 and there is my missing zero

Not the answer you are looking for?

Search for more explanations.

Ask your own question