anonymous
  • anonymous
find the derivative of sin[ln(cosx^3)]
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
chain rule 3 times. lol
Directrix
  • Directrix
In sin[ln(cosx^3)] is (cosx^3) meant to be (cos(x)) ^3 OR is it meant to be ( cos(x^3) ) ? They are not the same.
anonymous
  • anonymous
cos(x^3)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
here: we start by taking the derivative of the outside function sin(u) where u = ln(cosx^3). This is equal to cos(u)*du/dx. Then, du/dx requires the use of the chain rule again, therefore du/dx = d/dx ln(v) where v = cos(x^3). This is equal to (1/v)*dv/dx. We have that dv/dx requires use of the chain rule as well, so dv/dx = d/dx cos(k) where k = x^3. This is equal to -sin(k)*3x^2. So the final answer all together is: cos(ln(cosx^3))*(1/cosx^3)*(-sin(x^3))*3x^2

Looking for something else?

Not the answer you are looking for? Search for more explanations.