x-intercepts of: y=x^2*ln|x|+ex^2

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

x-intercepts of: y=x^2*ln|x|+ex^2

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[y=x^2\ln|x|+ex^2\], yes that is the constant "e" times x, not the exponential e^x. I end up with \[x^2(\ln|x|+e)=0 \implies x^2=0, \ln|x|=e^{-e}\] \[\implies x=0, x=\pm e^{-e}\] However, shouldn't the function not be defined at x=0, since ln(0) is undefined? Wolfram gives me this: http://www.wolframalpha.com/input/?i=x-intercepts+x%5E2ln%7Cx%7C%2Bex%5E2 where one zero is (0,inderteminate)... what does this mean?
You have it right. x = 0 is NOT in the Domain. What is the limit of the function as x approaches zero?
it would be 0?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Yes. The right limit is zero and the left limit is zero. Nevertheless, it is not continuous.

Not the answer you are looking for?

Search for more explanations.

Ask your own question