Here's the question you clicked on:
Needhelpp101
Perform the indicated operation. Find A -B. Question Below
|dw:1359440178068:dw|
Let A= M[-1,2,5:6,-1,8:-4,5,7] Setup the determinant by breaking it into smaller components. -1M[D,-1,8:5,7]-(6)M[D,2,5:5,7]-4M[D,2,5:-1,8] The determinant of a 2x2 matrix can be found using the formula M[D,a,b:c,d]=ad-cb -1((-1)(7)-(5)(8))-(6)M[D,2,5:5,7]-4M[D,2,5:-1,8] Simplify the determinant. 47-(6)M[D,2,5:5,7]-4M[D,2,5:-1,8] The determinant of a 2x2 matrix can be found using the formula M[D,a,b:c,d]=ad-cb 47-(6)((2)(7)-(5)(5))-4M[D,2,5:-1,8] Simplify the determinant. 47+66-4M[D,2,5:-1,8] The determinant of a 2x2 matrix can be found using the formula M[D,a,b:c,d]=ad-cb 47+66-4((2)(8)-(-1)(5)) Simplify the determinant. 47+66-84 Simplify the expression. 29
Let B = M[1,-1,4:5,3,2:-9,8,5] Setup the determinant by breaking it into smaller components. 1M[D,3,2:8,5]-(5)M[D,-1,4:8,5]-9M[D,-1,4:3,2] The determinant of a 2x2 matrix can be found using the formula M[D,a,b:c,d]=ad-cb (3)(5)-(8)(2)-(5)M[D,-1,4:8,5]-9M[D,-1,4:3,2] Simplify the determinant. -1-(5)M[D,-1,4:8,5]-9M[D,-1,4:3,2] The determinant of a 2x2 matrix can be found using the formula M[D,a,b:c,d]=ad-cb -1-(5)((-1)(5)-(8)(4))-9M[D,-1,4:3,2] Simplify the determinant. -1+185-9M[D,-1,4:3,2] The determinant of a 2x2 matrix can be found using the formula M[D,a,b:c,d]=ad-cb -1+185-9((-1)(2)-(3)(4)) Simplify the determinant. -1+185+126 Simplify the expression. 310
|dw:1359440510284:dw|
I'm confused because i'm missing the hypotenuse and one side is 3 and they don't give another side only an angle which is 45 degrees. |dw:1359440542596:dw|
|dw:1359440664080:dw|