At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

\[\int\limits_{0}^{2} \frac{ dx }{ e ^{\pi x} }\]

that e is to the power of \[\pi x\]

no that wouldn't work because when you find du it equals 0 = (

just plug in your limits and your done :)

it says the answer is
\[\frac{ 1 }{ \pi } (1-e ^{-2\pi})\]

can you show me how to do it step by step? in laments terms lol

ur just muliplying thru by -1 as last step to reverse the terms inside the parentheses

sorry one moment trying to make sense of all this lol

http://tutorial.math.lamar.edu/Classes/CalcI/ComputingIndefiniteIntegrals.aspx

you're quite welcome :)