anonymous
  • anonymous
Verify the identity. cos 4x + cos 2x = 2 - 2 sin^2 2x - 2 sin^2 x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
cos(4x)=cos(2x+2x) expand that^
ajprincess
  • ajprincess
\(\cos4x=1-2\sin^2 2x\) \(\cos2x=1-2\sin^2x\) does that help?
anonymous
  • anonymous
It did, but could you please show me how cos 4x = 1 - 2 sin^2 2x?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ajprincess
  • ajprincess
ya sure. \(\cos4x=\cos(2x+2x)\) \(=\cos2x\cos2x-\sin2x\sin2x\) \(=\cos^2 2x-\sin^2 2x\) \(=1-\sin^2 2x-\sin^2 2x\) \((\cos^2 2x=1-\sin^2 2x)\) \(=1-2\sin^2 2x\)
anonymous
  • anonymous
Do you have a reference where it says cos^2 2x = 1−sin^2 2x? I think it would be useful for me since I have a formula sheet but I don't see that on here...
ajprincess
  • ajprincess
\(\cos^2x+\sin^2x=1\) Similarly \(\cos^2 2x+\sin^2 2x=1\) \(\cos^2 2x=1-\sin^2 2x\)
anonymous
  • anonymous
Thank you for your time and assistance. :)
ajprincess
  • ajprincess
Welcome:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.