simplyfy

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[0.2=\cos(\frac{ \pi t }{ 12 })\]
solve for t
\[\frac{\pi t}{12}=\arccos (0.2)\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

oopss i did not think this way thx
but are you allowed to use calculator \[\pi t/12=\pm \arccos(0.2)+2 \pi k,\forall k\in Z\]
i got 5.231 but i only got one what about other value
|dw:1359586504389:dw|
notice that there are infinite number of solutiond but the general solution of these is \[\huge t=\frac{12}{\pi}\arccos(0.2)+2\pi k\] where k can be chosen from interger k={....-2,-1,0,1,2,3,4...}
where that +2 pi k came from
this is for every period of cos wich is every 360 =2pi but if you never did it just consider your answer + and -5.321 and 360-5.321
but the answers are +5.321 and 18.767
first \[\frac{t \pi}{12}=\cos^{-1}{0.2}=78\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question