Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

1). \[\lim_{(x,y) \rightarrow (0,0)} \frac{ x ^{2}y ^{2} }{ x ^{4}+y ^{4} }\] 2). \[\lim_{(x,y) \rightarrow (0,0)} \frac{ x ^{2}y ^{2} }{ 2x ^{4}+y ^{4} }\] In the first limit I used that \[f(x,y)=f(x,0) \rightarrow 0\] and \[f(x,y)=f(0,y)\rightarrow0\] But in the second one that becomes totally wrong, since the x-axis goes to zero and y-axis to 1/3. Why should one change from f(o,y)-> 0 to x=y in the second one, how do I recognize when I should set x=y ?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

*
?
just a bookmark!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Isn't answer to 1st one 1/2 ?
Nope it's 0.
it's a double limit, you have to be a bit careful with it ... since there are multiple ways to come at (0,0), I think there is a theorem .... but currently I am busty posting my own question.
http://www.wolframalpha.com/input/?i=limit+%28x%5E2+y%5E2+%2F%28x%5E4+%2By%5E4%29%29+as+x-%3E0+and+y-%3E0 What does this mean ?
says that limit does not exist, try y=x or y=x^2, if you don't get the same limit then limit does not exist.
According to the answerkey to Adams Calculus the answer for the first one is 0 and the second one DNE
\[\lim_{(x,y) \rightarrow (0,0)} \frac{ x ^{2}y ^{2} }{ x ^{4}+y ^{4} }\] let \(y=mx\) then \[\lim_{x \rightarrow 0} \frac{ x ^{2}(mx) ^{2} }{ x ^{4}+(mx) ^{4} }\] \[\lim_{x \rightarrow 0} \frac{ m^2x ^{4} }{ x ^{4}(1+m ^{4}) }\] \[\lim_{x \rightarrow 0} \frac{ m^2 }{ 1+m ^{4} }=\frac{ m^2 }{ 1+m ^{4} }\] pick any real number \(m\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question