anonymous
  • anonymous
Evaluate the indicated limit, if it exists. If it does not exist, explain why it doesn’t. Assume that lim x-> 0 sin x/x = 1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
it is a well known limit \[\lim_{x\to 0}\frac{\sin(x)}{x}=1\]
anonymous
  • anonymous
but the proof is not obvious look in any intro calculus book, it will be there using a geometric argument and the "squeeze theorem"
anonymous
  • anonymous
1) lim x-> 2 (x-5/x^2 + 4) 2) lim x-> 3 (x^2 - x - 6/x - 3) 3) lim h-> 0 ((2 + h)^2 - 4/h)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
1) replace \(x\) by 2
anonymous
  • anonymous
ok
anonymous
  • anonymous
2) factor as \[\frac{(x-3)(x+2)}{x-3}=x+2\] then replace \(x\) by 3
anonymous
  • anonymous
okay
anonymous
  • anonymous
3) expand get \[\frac{(2+h)^2-4}{h}=\frac{4+4h+h^2-4}{h}=\frac{4h+h^2}{h}=4+h\] then replace \(h\) by 0
anonymous
  • anonymous
ok
anonymous
  • anonymous
for number 4) its this one lim t-> -2 (1/2 + 1/t over 2 + t)
anonymous
  • anonymous
and 5) lim x->4 + sqrt(16 - x^2)
anonymous
  • anonymous
\[\frac{1}{2}+\frac{1}{t}=\frac{t+2}{2t}\] divide by \(t+2\) and get \[\frac{1}{2t}\] replace \(t\) by \(-2\)
anonymous
  • anonymous
ok
anonymous
  • anonymous
\[\lim_{x\to 4^+}\sqrt{16-x^2}\] does not exist because if \(x>4\) then \(16-x^2<0\) and you cannot take the square root of a negative number
anonymous
  • anonymous
okay thanks alot :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.