anonymous
  • anonymous
Use the given graph to identify all x-values at which the function is discontinuous.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1)
1 Attachment
anonymous
  • anonymous
2)
1 Attachment
anonymous
  • anonymous
@rizwan_uet can you help?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@RadEn can u help?
zepdrix
  • zepdrix
Ok let's look at the first one. If we slide over to \(x=-2\), the function is defined where the black dot is located. So the function value is -1 ish. But notice that if we try to move any further to the left, we have to `jump` up to grab the other line. This is called a `jump discontinuity`. The curve doesn't continue in one straight path. That's bad.
anonymous
  • anonymous
ok
zepdrix
  • zepdrix
Around \(x=2\), the line curves down to negative infinity on the left, and up towards positive infinity from the right side of 2. We call this an `infinite discontinuity` or sometimes called an `asymptotic discontinuity`.
zepdrix
  • zepdrix
Then at \(x=4\) we have a `sharp corner`. It would probably be more accurate to describe it as a `cusp`, but whatever :) Sharp corners like that are bad! Discontinuity! I can't remember what type of discontinuity it is though :( hmm
anonymous
  • anonymous
okay how about for graph number two i'll look it up for the word at x = 4
zepdrix
  • zepdrix
Hmm just like the first graph, it looks like we have a `jump` at \(x=-2\) yes? :)
anonymous
  • anonymous
yes we do
zepdrix
  • zepdrix
Then we move over to \(x=2\). There are no problems are the point, only AT that particular point. It's missing!!! We call this a `removable discontinuity`.
anonymous
  • anonymous
ok
zepdrix
  • zepdrix
Then at \(x=4\) we have a discontinuity that we saw in the first graph. Can you recognize it? :) hmm
anonymous
  • anonymous
yes the cusp thingee lol
zepdrix
  • zepdrix
no no no, not a cusp! :) There is no sharp corner. What's happening is, the line is going up up up on the right. and down down down on the left.
zepdrix
  • zepdrix
They draw a `pink line` to show that there is an asymptote located there. Meaning that our function does not exist in the pink area.
anonymous
  • anonymous
okay
zepdrix
  • zepdrix
So like in the first graph, when we see an asymptote, we have an `infinite discontinuity`.
anonymous
  • anonymous
ohh okay got it
zepdrix
  • zepdrix
|dw:1359671410605:dw|Here is another form of the `infinite discontinuity` that you might see come up.
zepdrix
  • zepdrix
Sometimes the branches go the same direction. But that dotted line let's us know that the function isn't defined there. The branches go up up up getting closer and closer to one another as they approach infinity. But they will not connect, since the dotted line will always separate them. So it's an `infinite discontinuity`.
anonymous
  • anonymous
okay thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.