For how many positive integer values of c does the equation below have an integer solution?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

For how many positive integer values of c does the equation below have an integer solution?

Algebra
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\huge \color{brown}{ 2x^2+689x+c}\]
\[(2x+a)(x+b)=4x^2+2x(a+b)+ab\] \[2(a+b)=689,ab=c\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i dont kow wat to do here
first 689 can never be written as even number
I am pretty bad at things like this for some reason, sorry.
thanks Turing
http://www.wolframalpha.com/input/?i=689
wolfram gives interger solutions as \[c=689n-2n^2, x=-n\]
I am assuming the equation is\[\large2x^2+689x+c=0\]right?
http://www.wolframalpha.com/input/?i=2x%5E2%2B689x%2Bc%3D0
2x^2 + 689x + c = 0 c = -689x - 2x^2 x= n will always given a -ve c, hence x should be -n , for some integer n, => c = 689n - 2n^2 this has to be >0 => 689n -2n^2 >0 => n(689 - 2n) >0\ We already know n>0 hence we only have to deal with 689 > 2n or n < 344.5 Hence there can be 344 required value's of c. I have done this on brilliant.org if I am not wrong.
yes its from them,i have many other problems from them,if you dont mind you can check the question i asked bfore this one...thanks makes sense
is this the only c
What do you mean "the only c" ?
the question says For how many positive integer values of c so are there 344 interger c's
yes.
okay thanks

Not the answer you are looking for?

Search for more explanations.

Ask your own question