Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Use the Intermediate Value Theorem to verify that f(x) has a zero in the given interval. Then use the method of bisections to find an interval of length 1/32 that contains the zero.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
f(x) = x^2 - 7, [2,3]
can u help with this last one then i'm done for today @zepdrix
Well we can determine where f(x) has a zero by setting the function equal to zero and solving for x.\[\large f(x)=x^2-7 \qquad \rightarrow \qquad 0=x^2-7 \qquad \rightarrow \qquad x=\sqrt 7\] \(\sqrt 7\) is approximately \(2.65\) which is between 2 and 3. I'm not exactly sure how to apply the Intermediate Value Theorem, or Bisections for that matter :( Hmmm But that's where the root is located at least :C

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

okay thanks for the help i appreciate it

Not the answer you are looking for?

Search for more explanations.

Ask your own question