Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

how do you find out if a vector is linearly dependent or not?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

so for vectors v1,v2,v3,v4,........vn there exists scalars s1,s2,s3,s4......sn such that s1*v1 +s2*v2+ s3*v3 +.......................................sn*vn=0 then vectors v1,v2 ..... vn are linearly independent if each of s1,s22,s3...sn is 0 and linearly dependent if at least one of s1,s22,s3...sn is not 0
soo if my vectors are [0 2 3], [0 0 -8], and [1 -3 1], they would be independent?
I believe those would be independent. Suppose that there are some scalars \(c_1,c_2\in\mathbb{R}\) such that \[c_1\cdot[0,2,3]+c_2[0,0,8]=[1,-3,1]\]So\[[0,2c_1,3c_1]+[0,0,8c_2]=[1,-3,1]\]However, \(0+0=0\neq1\) for any choice of \(c_1\) and \(c_2\). You can make similar arguments to show that \([0,2,3]\) and \([0,0,8]\) are similarly independent. This would show that all three are linearly independent.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

woahhh that makes so much sense! [: thank you :) can you make that argument all the time?
You can try to make that argument. If you're working in \(\mathbb{R}\) or the complex numbers, it's usually fairly straightforward (at least in what you will be expected to do). An alternative method, which works particularly well when you have 3 or 2-dimensional vectors, is to put them in a matrix. \[\begin{bmatrix}1&-3&1\\0&2&3\\0&0&8\end{bmatrix}\]If you can row-reduce to this form, they're linearly independent.
Another thing to watch for, is the dimension of the vector space. If you have an \(n\) dimensional vector space, and \(m\) vectors, where \(m>n\), then your vectors are not linearly independent.

Not the answer you are looking for?

Search for more explanations.

Ask your own question