vishweshshrimali5
  • vishweshshrimali5
Solve: \[\large{\theta = \tan^{-1}(2\tan ^2\theta) - \frac{1}{2} \sin^{-1} \frac{3 \sin 2 \theta }{ 5 + 4 \cos 2 \theta }}\]
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

vishweshshrimali5
  • vishweshshrimali5
amistre64
  • amistre64
and what is it we are looking to do with this monstrocity?
vishweshshrimali5
  • vishweshshrimali5
Solve for theta

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

vishweshshrimali5
  • vishweshshrimali5
(general solutions)
amistre64
  • amistre64
im just too sick to be able to concentrate on most of that :/
vishweshshrimali5
  • vishweshshrimali5
Its OK
vishweshshrimali5
  • vishweshshrimali5
Eventhough Thanks for your time
amistre64
  • amistre64
\[{\theta = \tan^{-1}(2\tan ^2\theta) - \frac{1}{2} \sin^{-1} \frac{3 \sin 2 \theta }{ 5 + 4 \cos 2 \theta }}\] \[{t = \tan^{-1}(2sec^2t-2) - \frac{1}{2} \sin^{-1} \frac{3 \sin 2t }{ 5 + 4 \cos 2t }}\] \[{2t = 2\tan^{-1}(2sec^2t-2) - \sin^{-1} \frac{3 \sin 2t }{ 5 + 4 \cos 2t }}\] yeah, im not going to be able to work it out in this condition :) good luck tho
hartnn
  • hartnn
maybe use \(arcsin x= 2arctan (x/(1+\sqrt{1-x^2}))\)
anonymous
  • anonymous
\[\frac{ 1 }{ 2 }\sin^{-1} \frac{ 3\sin \theta }{ 5+4 \cos \theta }\]be assumed as \[ \alpha\] now\[\sin 2\alpha =\frac{ 3 \sin 2 \theta }{ 5+4\cos2 \theta }=m\] suppose now\[m=\frac{ 6 \tan \theta }{ 9+\tan ^{2}\theta } ,\]
anonymous
  • anonymous
\[\sqrt{\frac{ 1-m }{ 1+m }}=\tan{\frac{ \pi }{ 4 } -\alpha}\] \[\sqrt{\frac{ 1-m }{ 1-m }}=\frac{ 3-\tan \theta }{ 3+\tan \theta }\] \[\frac{ \pi }{ 4 }- \alpha=\tan^{-1} \sqrt{\frac{ 1-m }{ 1+m }}\] substituting these values in the equation we obtain a cubic equation\[\tan ^{3}\theta -3\tan \theta+2=0\] i don't know how to solve it plz kindly tell me still by hit and trial i got pi/4
hartnn
  • hartnn
to solve, x^3-3x+2=0 i would first note that 1-3+2 =0 hence (x-1) must be the factor, x=1 must be the root tan theta =1 gives theta = pi/4
hartnn
  • hartnn
to get other 2 roots, we can use synthetic division, taking x=1
anonymous
  • anonymous
other values are tan theta =2,-1 ,thanks hartnn

Looking for something else?

Not the answer you are looking for? Search for more explanations.