anonymous
  • anonymous
Help please If 2x = a + b + c show (x-a)^2 +(x-b)^2 + (x-c)^2+x^2 = a^2 +b^2+c^2.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
IF 2x=a+b+c Show that \[(x-a)^{2}+(x-b)^{2}+(x-c)^{2} +x ^{2}=a ^{2}+b ^{2}+c ^{2}\]
anonymous
  • anonymous
it have no idea how to start!!!
anonymous
  • anonymous
i*

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
You can use the Intermediate Value Theorem. Note that F is a polynomial and hence is differentiable everywhere (differentiable ==> continuous). I'll assume a < b---order doesn't really matter, but I do want a to be different from b. Consider the interval [a, b]. Note that f(a) = a, and f(b) = b. The number (a + b)/2 is between a and b (exactly half way in between!). The IVT says that if f takes on the values a and b it has to take on every value between them. It follows immediately that there exists c in (a, b) such that f(c) = (a + b)/2.
anonymous
  • anonymous
Does that help?
anonymous
  • anonymous
im lost :P
anonymous
  • anonymous
Well that is the only way i can explain it
anonymous
  • anonymous
whatever you just typed is very confusing as my question is clearly not a polynomial...
anonymous
  • anonymous
ok well sorry, bye..!
sirm3d
  • sirm3d
\[(x-a)^2+(x-b)^2+(x-c)^2+x^2=x^2-2ax+a^2+x^2-2bx+b^2+x^2-2xc+c^2+x^2\\=4x^2+a^2+b^2+c^2-2ax-2bx-2cx\\=(2x)^2+a^2+b^2+c^2-2x(a+b+c)\\=(a+b+c)^2+a^2+b^2+c^2-(a+b+c)(a+b+c)\\=(a+b+c)^2+a^2+b^2+c^2-(a+b+c)^2\\=a^2+b^2+c^2 \]
sirm3d
  • sirm3d
whoops, the \(+x^2\) wouldn't show.
anonymous
  • anonymous
thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.