zepp
  • zepp
derivative of an integral \[\frac{d}{dx}\int f(x^2)dx^2\]
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

zepp
  • zepp
i've never seen a \(\large dx^2\), anyone can explain to me what it is?
saifoo.khan
  • saifoo.khan
Zippy! Me meet again. ;D
zepp
  • zepp
ohai saif :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

saifoo.khan
  • saifoo.khan
not sure how to solve this. :/
AccessDenied
  • AccessDenied
I recommend attempting the substitution: \(\sqrt{u} = x\). Just a hunch that it may turn out well (and not because I just explained the solution on irc chats). I think it may be helpful to our problem so that the f(x^2) dx^2 becomes f(u) du, etc...
AccessDenied
  • AccessDenied
\[ \newcommand\dd[1]{\,\mathrm d#1} \newcommand\de[1]{\frac{\mathrm d}{\mathrm d#1}} \text{Let } \sqrt{u} = x \text{. Then, } \\ \; \frac{1}{2 \sqrt{u}} \dd{u} = \dd{x} \\ \begin{align*} \implies \de{x} \int f(x^2) \dd{x^2} &= \frac{\text{d}}{\left(\frac{1}{2\sqrt{u}}\right) \; \dd{u}} \int f(u) \; \dd{u} \\ &= 2\sqrt{u} \de{u} \int f(u) \; \dd{u} \\ &= 2x f(u) \\ &= 2x f(x^2) \\ \end{align*} \]
tkhunny
  • tkhunny
Another Way: \(\de{x}\int f(x^{2})\;dx^{2} = \de{x}\int f(x^{2})\cdot 2x\;dx = \de{x} \left(F(x^{2}) + C\right) = f(x^{2})\cdot 2x\) Same thing, really.

Looking for something else?

Not the answer you are looking for? Search for more explanations.