anonymous
  • anonymous
Three concentric spherical shells have radii a, b and c(a
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I think it's 3 but I can't seem to explain why.. It's a matter of reasoning going from the basis that the potentials are dependent on both radius and surface charge. Looking at the information given, there seems to be no way that any of the potentials could ever be equal to one of the others without disregarding one of the equations.
anonymous
  • anonymous
The answer in book is 1 but it can be a misprint as well though a small solution is also given in the book. Still it is beyond my understanding. I am giving the solution as given in book........\[Va=\frac{ 1 }{ 4\pi \epsilon _{o} }\frac{ \sigma4\pi a ^{2} }{ a }-\frac{ 1 }{ 4\pi \epsilon _{o} }\frac{ \sigma4\pi b ^{2} }{ b }+\frac{ 1 }{ 4\pi \epsilon _{o} }\frac{ \sigma4\pi c ^{2} }{ c }\] \[V _{b}=\frac{ 1 }{ 4\pi \epsilon _{o} }\frac{ \sigma4\pi a ^{2} }{ a }-\frac{ 1 }{ 4\pi \epsilon _{o} }\frac{ \sigma4\pi b ^{2} }{ b }+-\frac{ 1 }{ 4\pi \epsilon _{o} }\frac{ \sigma4\pi c ^{2} }{ c }\] \[V _{c}=\frac{ 1 }{ 4\pi \epsilon _{o} }\frac{ \sigma4\pi a ^{2} }{ a }-\frac{ 1 }{ 4\pi \epsilon _{o} }\frac{ \sigma4\pi b ^{2} }{ b }+\frac{ 1 }{ 4\pi \epsilon _{o} }\frac{ \sigma4\pi c ^{2} }{ c }\] Hence Va=Vb≠Vc
anonymous
  • anonymous
for c=a+b \(V_a=\frac{1}{4\pi \epsilon_0}( \frac{4\pi a^2 \sigma }{a}-\frac{4\pi b^2 \sigma }{b}+\frac{4\pi c^2 \sigma }{c})=\frac{\sigma}{\epsilon_0}(a-b+c)=\frac{\sigma}{\epsilon_0}(2a)\) \(V_b=\frac{1}{4\pi \epsilon_0}( \frac{4\pi a^2 \sigma }{b}-\frac{4\pi b^2 \sigma }{b}+\frac{4\pi c^2 \sigma }{c})=\frac{\sigma}{\epsilon_0}(\frac{a^2}{b}-b+c)=\frac{\sigma}{\epsilon_0}(\frac{a^2 +ab}{b})\) \(V_c=\frac{1}{4\pi \epsilon_0}( \frac{4\pi a^2 \sigma }{c}-\frac{4\pi b^2 \sigma }{c}+\frac{4\pi c^2 \sigma }{c})=\frac{\sigma}{\epsilon_0}(\frac{a^2-b^2}{a+b}+a+b)=\frac{\sigma}{\epsilon_0}(2a)\) thus answer is (1) do you need further help?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
note that the potential outside the charged sphere is \(V=\frac{r_0^2 \sigma}{\epsilon_0 R}\) but inside the sphere it's\(V=\frac{r_0 \sigma}{\epsilon_0 }\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.