anonymous
  • anonymous
tan ⁻¹0
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

tkhunny
  • tkhunny
The tangent of what angle is zero? The sine of what angle is zero?
anonymous
  • anonymous
i guess? what does tan⁻¹0 = ?
anonymous
  • anonymous
arctan(0) = arcsin(0)/arccos(0) so you just have inverse functions. So the sinx = 0 if x = 0 and cosx = 0 if x = Pi/2 so in this case your answer is 0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

tkhunny
  • tkhunny
That's what I was trying to define for you. Have you meat the tangent function? It is NOT the case that \(atan(x) = \dfrac{asin(x)}{acos(x)}\). That is just incorrect. It is not the case that tan(x) = 0 where cos(x) = 0. That is just incorrect.
anonymous
  • anonymous
|dw:1359824929642:dw|
tkhunny
  • tkhunny
\(tan^{-1}(x) = arctan(x) = atan(x)\) It is the invere of the Tangent function. If \(\tan(\theta) = b\;then\;\theta = atan(b)\;for\;-\dfrac{\pi}{2} < \theta < \dfrac{\pi}{2}\)
tkhunny
  • tkhunny
* inverse

Looking for something else?

Not the answer you are looking for? Search for more explanations.