At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

The answer is 8pi

Disk Washer?

There's a hole in the solid.. so it's called Washer Method.

So how does this method work?

\[\int\limits_{a}^{b} \pi (outer radius)^2 -(innerradius)^2 dx\]

I don't how that works, I'm afraid.

|dw:1359838432884:dw|

|dw:1359838561883:dw|So let's look at one slice.

Oh you're doing the washer/disk method, my mistake..
Lemme slice that differently.

|dw:1359838731527:dw|Ok this type of slice will give us a Disk.

|dw:1359838764034:dw|So we want to get the Volume of this disk.

\[\large y=x^2 \qquad \rightarrow \qquad x=\sqrt y\]

\[\large V=\pi\left[(2)^2-(\sqrt y)^2\right]dy\]

Simplifying things down gives us,
\[\large \pi \int\limits_0^4 4-y \;dy\]

Yah I think that's right.
Confused about any of that?
I went through it a little sloppy D:

Oh cool c: