Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Show by verifying the hypothesis of the Existence and Uniqueness Theorem that the initial value problem x dot = 1+x^2, x(0) = 0 has a unique solution. Find the solution. what is the maximal interval of definition of the solution? I'll put what I think is the answer as a response. Could you tell me if I took the right approach?

Differential Equations
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Because f: R-> R is continuous, then for any x knot which is an element of R, there is an interval (alpha,beta) containing 0 and there is a solution x(t) of x dot = f(x). The limit exist, therefore a solution exists. Because f is differentiable and f' is continuous, then x(t) is unique.
The solution is 0 and the maximal interval of definition is (-infinity,infinity)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question