anonymous
  • anonymous
Show by verifying the hypothesis of the Existence and Uniqueness Theorem that the initial value problem x dot = 1+x^2, x(0) = 0 has a unique solution. Find the solution. what is the maximal interval of definition of the solution? I'll put what I think is the answer as a response. Could you tell me if I took the right approach?
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Because f: R-> R is continuous, then for any x knot which is an element of R, there is an interval (alpha,beta) containing 0 and there is a solution x(t) of x dot = f(x). The limit exist, therefore a solution exists. Because f is differentiable and f' is continuous, then x(t) is unique.
anonymous
  • anonymous
The solution is 0 and the maximal interval of definition is (-infinity,infinity)

Looking for something else?

Not the answer you are looking for? Search for more explanations.