anonymous
  • anonymous
help step by step? integral of (2sec^2(x))/(1+tan^2(x))dx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I want to be shown step by step.. explaining..
sirm3d
  • sirm3d
start using the identity \[1+\tan^2 x= \sec^2 x\]
anonymous
  • anonymous
ok wait.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
you can also do it via substitution: integral of (2sec^2(x))/(1+tan^2(x))dx = 2 (integral of (sec^2(x))/(1+tan^2(x))dx) because 2 is a constant 2 (integral of (sec^2(x))/(1+tan^2(x))dx) ; u=tan(x) du= sec(x)^2 then you're left with 2 (integral of 1/(1+u^2)dx) ; you may notice this is equal to 2arctan(u) substitute tanx back in for u, and you recieve 2arctan(tan(x)) = 2x The most general version of this is 2x+C which is your answer (sorry if the math text is a bit hard to read (I'm new here and really lost lol)

Looking for something else?

Not the answer you are looking for? Search for more explanations.