anonymous
  • anonymous
How can one test the symmetry of x axis, y axis and origin?
MIT 18.06 Linear Algebra, Spring 2010
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Please tell the answer.
anonymous
  • anonymous
May I assume that you mean test some function for symmetry across the x and y axes and the origin ? :-) Generally it means applying some transformation and seeing if there is no change ie. swap x for -x and see if f(x) = f(-x) so with \[f(x) = x^{2}\]then \[f(-x)=(-x)^{2} = (-1)^{2}x^{2}= x^{2}=f(x)\]if we are plotting this function in two dimensions as \[y =x^{2}\] |dw:1359934489024:dw|then this implies symmetry of reflection across the y-axis ( pardon my drawing skills ). Symmetry across the x-axis is likewise. As regards the origin : then that is a reflection across the y-axis and then another reflection across the x-axis. Thus a circle |dw:1359935010242:dw|is symmetric across x and y axes and hence the origin too. You can deduce this from the equation for a circle, say : \[x^{2}+ y^{2} = 1\]is invariant if we swap x for -x and y for -y \[(-x)^{2} + (-y)^{2} = (-1)^{2}x^{2} + (-1)^2y^{2} = x^{2} + y^{2}\]To be complete I ought mention that reflections across the x then y axes ( or vice versa ) is equivalent to a rotation of 180 degrees around the origin ....
anonymous
  • anonymous
Err, the circle was in that second graphic earlier today.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thanks.

Looking for something else?

Not the answer you are looking for? Search for more explanations.