Find all solutions in the interval [0, 2π). 7 tan3x - 21 tan x = 0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find all solutions in the interval [0, 2π). 7 tan3x - 21 tan x = 0

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

If you write tan3x as tan(x+2x) you can use the formula for tan(a+b)= (tan a + tan a) / (1 − tan a tan b)
How do you find all of the answers

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Hold on, I'm thinking ;)
I first divide the equation by : tan3x - 3tanx = 0 Using the sum formula:\[\frac{ \tan x+\tan2x }{ 1-\tan x \tan 2x }-3\tan x=0\]Now use the formula again, with a=b=x, to get rid of tan2x:\[\frac{ \tan x+\frac{ 2\tan x }{ 1-\tan^2x } }{ 1-\tan x \frac{ 2\tan x }{ 1-\tan^2x } }-3\tan x =0\]This is equivalent to\[\frac{ \tan x+\frac{ 2tanx }{ 1-\tan^2x } }{ 1-\frac{ 2\tan^2x }{ 1-\tan^2x } }-3\tan x=0\]This is getting a little messy, but we'll keep going on...
(divided it by 7 btw)
Simplify this fraction-mess:\[\frac{ \frac{ \tan x(1-\tan^2x)+2\tan x }{ 1-\tan^2x } }{ \frac{ 1-\tan^2x-2\tan^2x }{ 1-\tan^2x } }-3\tan x=0\]Multiply numerator and denomminator by 1-tan²x:\[\frac{ 3\tan x-\tan^3x }{ 1-3\tan^2x }=3\tan x\]Multiply LHS and RHS by 1-3tan²x:\[3\tan x-\tan^3x=3\tan x-9\tan^3x \Leftrightarrow 8\tan^2x=0\]Now things are looking sunny again! We have tan x = 0. On [0,2pi) there are only the solutions 0 and pi.

Not the answer you are looking for?

Search for more explanations.

Ask your own question