anonymous
  • anonymous
Find all solutions in the interval [0, 2π). 7 tan3x - 21 tan x = 0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ZeHanz
  • ZeHanz
If you write tan3x as tan(x+2x) you can use the formula for tan(a+b)= (tan a + tan a) / (1 − tan a tan b)
anonymous
  • anonymous
How do you find all of the answers
anonymous
  • anonymous
@ZeHanz

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ZeHanz
  • ZeHanz
Hold on, I'm thinking ;)
ZeHanz
  • ZeHanz
I first divide the equation by : tan3x - 3tanx = 0 Using the sum formula:\[\frac{ \tan x+\tan2x }{ 1-\tan x \tan 2x }-3\tan x=0\]Now use the formula again, with a=b=x, to get rid of tan2x:\[\frac{ \tan x+\frac{ 2\tan x }{ 1-\tan^2x } }{ 1-\tan x \frac{ 2\tan x }{ 1-\tan^2x } }-3\tan x =0\]This is equivalent to\[\frac{ \tan x+\frac{ 2tanx }{ 1-\tan^2x } }{ 1-\frac{ 2\tan^2x }{ 1-\tan^2x } }-3\tan x=0\]This is getting a little messy, but we'll keep going on...
ZeHanz
  • ZeHanz
(divided it by 7 btw)
ZeHanz
  • ZeHanz
Simplify this fraction-mess:\[\frac{ \frac{ \tan x(1-\tan^2x)+2\tan x }{ 1-\tan^2x } }{ \frac{ 1-\tan^2x-2\tan^2x }{ 1-\tan^2x } }-3\tan x=0\]Multiply numerator and denomminator by 1-tan²x:\[\frac{ 3\tan x-\tan^3x }{ 1-3\tan^2x }=3\tan x\]Multiply LHS and RHS by 1-3tan²x:\[3\tan x-\tan^3x=3\tan x-9\tan^3x \Leftrightarrow 8\tan^2x=0\]Now things are looking sunny again! We have tan x = 0. On [0,2pi) there are only the solutions 0 and pi.

Looking for something else?

Not the answer you are looking for? Search for more explanations.