anonymous
  • anonymous
Use a proof by cases to show that min(a , min(b, c» = min(min(a , b) , c) whenever a, b, and c are real numbers.
Discrete Math
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
i guess you can grind it out with cases, for example if \(a\leq b\leq c\) then \[\min(a, (\min(b,c))=\min(a, b)=a\]
anonymous
  • anonymous
similarly if \(a\leq c\leq b\) then \(\min(a,\min(b,c))=\min(a,c)=a\) and so on
anonymous
  • anonymous
thank you for clear answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
oh i guess you have to say for the first one that \(\min(a, \min(b,c))=a=\min(\min(a,b),c)\)
anonymous
  • anonymous
likewise for the second. there may be a snappier way to do this, but it did say by cases, so just grind it out
anonymous
  • anonymous
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.