Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Boolean algebra Show that F(x, y, z) = xy + xz + yz has the value 1 if and only if at least two of the variables x, y, and z have the value 1. How can I show that apart from drawing the truth table??

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

since this is completely symmetric in \(x, y, z\) you can work by cases
by which i mean without loss of generality you can say \(x=1,y=1, z=1\) and get it, or \(x=1,y=1,z=0\) and also get it
then for the "if" part, take \(x=1,y=0,z=0\) and show it is not true and also in the case \(x=y=z=0\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

But then, it would be similar to drawing the truth table...
i have attached a file of the truth table but it is not uploading for a reason probably due to a file format, however, all the cases are valid apart from 0 or 0 or 0 of your and statments
1 Attachment
0 represents F, and 1 represents T
here's what we can do without using truth table. Double complement F , F = (xy+yz+xz) '' =[ (xy+yz+xz)']' now use De-morgan's law on (xy+yz+xz) ' what you get ?
where a' means complement of a
(xy + yz +xz)'' = [(xy + yz +xz)']' = [(xy)' (yz)' (xz)']' = [(x'+y') (z'+y') (x'+z') ]' = [ (x'z' + y'z' + x'y' + y') ( x'+z') ]' = [ x'z' + x'y'z' + x'y' + y'z' ]' = [x'z' + x'y' (z'+1) + y'z' ]' = (x'y' + x'z' + y'z')'
yes, with (x'y' + x'z' + y'z')' you can conclude that F has the value 1 if and only if at least two of the variables x, y, and z have the value 1.
because if say you have only x=1 then (x'y' + x'z' + y'z')' = (0+0+1)' = 0
so, atleast 2 variables have to be 1 to get (x'y' + x'z' + y'z')' =1
(Testing) x=1, y=1 (x'y' + x'z' + y'z')' = (0 + 0 + 0)' = 1 x=1, z=1 (x'y' + x'z' + y'z')' = (0 + 0 +0)' = 1 y=1, z=1 (x'y' + x'z' + y'z')' = (0 + 0 + 0)' = 1 x=y=z=1 (x'y' + x'z' + y'z')' = (0 + 0+ 0)' =1 Wow!! Thanks!!!
welcome ^_^

Not the answer you are looking for?

Search for more explanations.

Ask your own question