Find the cube roots of 8(cos 216° + i sin 216°).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the cube roots of 8(cos 216° + i sin 216°).

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

-7.978
You again? LOL, let's get down to business :D First off, I'm going to write \[\large r(\cos \theta + i \sin \theta) = r \ cis \theta\] It's shorter that way :P Ready?
8 (cos 216 + i sin 216) =\[8e^{i 216}\] rest you can do ;)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Haha these are tough !! @terenzreignz
\[(8 e^{i 216} ) ^ {1/3}= 2 e^{i 72}\]
Okay, since you're awesome (^.^), I'll not use shortcuts... So, if we have \[\large z = r (\cos \theta + i \sin \theta)\] In general, we get \[\large z^p=r^p(\cos \ p\theta + i \sin \ p\theta)\] I say in general, because in the case of fractional exponents (like taking the cube root, for instance), there's a minor catch...
Let's look at this part first, for instance: \[\cos \theta + i \sin \theta\] This is equal to \[\large \cos (\theta + 2 \pi) + i \sin (\theta + 2\pi)\] right?
Okay I see
In fact, equal to \[\large \cos (\theta + 2k\pi) + i \sin (\theta + 2k\pi)\] for any integer k. Catch me so far?
But let's use degrees, it seems the situation calls for it... \[\cos \theta + i \sin \theta = \cos (\theta + 360k^o) + i \sin (\theta + 360k^o\]
So back to the question: Cube roots of \[\large 8(\cos \ 216^o + i \sin \ 216^o)\] Now use this rule \[\large z^p=r^p(\cos \ p\theta + i \sin \ p\theta)\] and since we're taking the cube root, take p = 1/3... go ahead now...
Thank you @terenzreignz ! That makes a whole lot more sense now
Could you do it from here? Could you post your answers, too?
Yea Ill post the answer I got when I finish !
Applying the rule, we get... \[\huge 8^{\frac{1}{3}}(\cos \frac{216}{3}^o + i \sin \frac{216}{3}^o)\] \[\large =2(\cos 72^o + i \sin 72^o)\]
However, we have to also consider the cube root of \[\large 8[\cos (216+360)^o + i \sin (216+360)^o]\] Since \[\large 8[\cos \ 216^o + i \sin \ 216^o]=\large 8[\cos (216+360)^o + i \sin (216+360)^o]\]
applying the rule again, we get \[\huge 8^{\frac{1}{3}}(\cos \frac{216+360}{3}^o + i \sin \frac{216+360}{3}^o)\] \[\large = 2(\cos \ 192 + i \sin \ 192)\]
However still, we have to also consider the cube root of \[\large 8[\cos (216+2(360))^o + i \sin (216+2(360))^o]\]\[=\large 8[\cos (216+720)^o + i \sin (216+720)^o]\] Since \[\large 8[\cos \ 216^o + i \sin \ 216^o]=\large 8[\cos (216+720)^o + i \sin (216+720)^o]\]
Applying the rule yet again, we get\[\huge 8^{\frac{1}{3}}(\cos \frac{216+720}{3}^o + i \sin \frac{216+720}{3}^o)\]\[\large = 2(\cos \ 312+ i \sin \ 312)\]
Et voila! Your three cube roots. I'll show you a shortcut for this, but first, let's see what happens if continue this process... namely that we take the cube root, only add 360 degrees more to the angle:
Consider\[\large 8[\cos (216+3(360))^o + i \sin (216+3(360))^o]\]\[=\large 8[\cos (216+1080)^o + i \sin (216+1080)^o]\] Applying the rule (yet again)...
We get \[\huge 8^{\frac{1}{3}}(\cos \frac{216+1080}{3}^o + i \sin \frac{216+1080}{3}^o)\] \[\large = 2(\cos \ 432+ i \sin \ 432)\]
But 432 is already past 360, so it's the same if we subtract 360 from it, and we'd get \[\large =2(\cos 72^o + i \sin 72^o)\] Which was the first answer we got, so we really only have 3 cube roots.
Anyway, a shortcut for this, when getting the nth roots of a complex number in polar form, you just apply the rule directly, and only once... \[\huge 8^{\frac{1}{3}}(\cos \frac{216}{3}^o + i \sin \frac{216}{3}^o)\] \[\large =2(\cos 72^o + i \sin 72^o)\] And just keep adding \[\frac{360}{n}\] degrees to the angle until you have n distinct answers. In this case, n = 3, so keep addint 360/3 = 120 to the angle until you have three cube roots... The angles are 72 72 + 120 = 192 72 + 120 + 120 = 312
And that's it, I have to go now, have fun with Trig :) --.-- Terence out

Not the answer you are looking for?

Search for more explanations.

Ask your own question