anonymous
  • anonymous
The median of a triangle is a vector from a vertex to the midpoint of the opposite side. Show the sum of the medians of a triangle = 0. Answer: The median of side AB is the vector from vertex C to the midpoint of AB. Label this midpoint as P. As usual we write P for the origin vector −−→ OP. −−→ CP = 1 2 (A + B) 1 The midpoint P = ⇒ (B + A) − C. 2 Likewise: −−→ BQ = (A + C) − B and −−→ AR = 1 2 1 2 (B + C)
MIT 18.02 Multivariable Calculus, Fall 2007
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Why is it -c and not +c?
anonymous
  • anonymous
Geometrically I do not see what is happening when we subtract that
anonymous
  • anonymous
http://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/1.-vectors-and-matrices/part-a-vectors-determinants-and-planes/session-1-vectors/MIT18_02SC_we_4_comb.pdf

Looking for something else?

Not the answer you are looking for? Search for more explanations.