• anonymous
Let Q = (0,4) and R= (12,8) be given points in the plane. We want to find the point P=(x,0) on the x-axis such that the sum of distances PQ+PR is as small as possible. (Before proceeding with this problem, draw a picture!) To solve this problem, we need to minimize the following function of x: f(x)= over the closed interval [a,b] where a= and b=. We find that f(x) has only one critical point in the interval at x= where f(x) has value Since this is smaller than the values of f(x) at the two endpoints, we conclude that this is the minimal sum of distances.
Calculus1
• Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Looking for something else?

Not the answer you are looking for? Search for more explanations.