anonymous
  • anonymous
'm' grams of a gas of a molecular weight M is flowing in an isolated tube with velocity V. If the flow of the gas is suddenly stopped the rise in temperature is ( Gamma=ratio of specific heats, R = universal gas const, J =mechanical equivalent of heat): 1) MV^2(Gamma-1)/ 2RJ , 2) m/M V^2(gamma-1)/2RJ , 3)mV^2 gamma/2RJ, 4) MV^2gamma/2RJ My efforts: Work = J Q or 1/2mV^2 = J (m s x rise in temp) or Rise in temp = mV^2 /2m s Now how to convert S =specific heat into ratio of specific heats of gas ? we know gamma= (Cp /Cv)=(cp /cv) but not able crack further.
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
You may try to use Cp-Cv=R along with the ratio equation. For specific heats Sp=Cp/M and Sv=Cv/M
anonymous
  • anonymous
Cp-Cv=R or Cp/Cv-1=R/Cv or Cv= R/(Lamda-1) or Sv = R/M(Lamda-1) and the question is solved. But my doubt is why Cv is to be taken ? Is there a relation with 'isolated tube' of 'suddenly stopped'? Pl help
anonymous
  • anonymous
As you already know the kinetic energy of the moving gas is converted into internal energy ie heat of the gas when it is shut off. Since we have a constant volume we know \[mc _{v}\Delta T=\Delta E\] we also know that\[c _{p}=c _{v}+R/M\] and\[\gamma =c _{p}/c _{v}\] eliminate Cv in favor of gamma

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thanks both Diwakar & gleem.

Looking for something else?

Not the answer you are looking for? Search for more explanations.