anonymous
  • anonymous
solve ln x= 1- ln (x+2)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I get : lnx+ ln (x+2) ln(x)(x+2) ln (x^2 + 2x)= 1 e^1 = x^2 +2x ? and i need help from there on
zepdrix
  • zepdrix
I guess we would have to complete the square on the X's. Take half of the b term, and square it.\[\large x^2+bx\]
anonymous
  • anonymous
so x^2+2x+1 = e ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
but i get\[x= \sqrt{e}-1\]
anonymous
  • anonymous
is that the answer?
blurbendy
  • blurbendy
log(x) = 1 - log(x + 2) log(x) - 1 + log(x+2) = 0 log(x(x+2)) = 1 x(x+2) = e x^2 + 2x = e x^2 + 2x + 1 = 1 + e (x + 1)^2 = 1 + e x+1 = Sqrt[1 + e] or x + 1 = - Sqrt[1 + e} x = Sqrt[1 + e] - 1 or x + 1 = - Sqrt[1 + e] x = Sqrt[1 + e] - 1 or x = -1 -Sqrt[1 + e] Substitute back into the original equation, only 1 will be right x = Sqrt[1 + e] - 1
zepdrix
  • zepdrix
Ahhh sorry website froze :( erased all my stuff...
anonymous
  • anonymous
thanks everyone and that sucks! @zepdrix :/ but thanks either way !
anonymous
  • anonymous
ln(x)+ln(x+2)=1 ln(x(x+2))=ln(e) x(x+2)=e \[x ^{2}+2x-e=0\] D=4+4e=4(1+e) =>sqrtD=2sqrt(1+e) x1=[-2+2sqrt(1-e)]/2=-1+sqrt(1+e)>0 accepted x2=[-2-2sqrt(1-e)]/2=-1-sqrt(1+e)<0 denied

Looking for something else?

Not the answer you are looking for? Search for more explanations.