anonymous
  • anonymous
Find the term in the binomial expansion of (((x^2)/3)-(1/x))^9 that is a constant.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[(\frac{ x ^{2} }{ 3 } - \frac{ 1 }{ x })^{9}\]
anonymous
  • anonymous
Nasty one. The binomial expansion\[(a+b)^{n}= \sum_{k=0}^{n}\frac{ n! }{k!(n-k)!}a^{n-k}b^{k}\]has powers of a decreasing while those of b increase as you go up in the index k. Consider for this problem that \[a=x^{2}/3\]and \[b= -1/x=-x^{-1}\]and \[n=9\]They are effectively asking for the value of k that gives\[(a)^{n-k}(b)^{k}=(x^{2}/3)^{9-k}(-x^{-1})^{k}=constant \times x^{0}\]and so looking at those powers\[2(9-k)+(-k)=0\]\[18-2k-k=0\]\[3k=18\]\[k=3\]so what is the multiplier of that power of x?\[(1/3)^{9-3}(-1)^{3}\frac{9!}{3!(9-3)!}=(-1)(3^{-6})\frac{(9\times 8 \times 7 \times 6 \times 5\times4 \times 3 \times 2 \times 1)}{(3 \times 2 \times 1)(6 \times 5\times4 \times 3 \times 2 \times 1)}\].... aaargh ......\[=-28/3^{5}\]I think ! :-)
anonymous
  • anonymous
I just know that the final answer is 29/8. Thanks!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Ah, I've probably fumbled the arithmetic somewhere, but the method is as described. :-)

Looking for something else?

Not the answer you are looking for? Search for more explanations.