Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing

This Question is Closed

zepdrixBest ResponseYou've already chosen the best response.2
\[\large f(x)=\cosh^2\left(x^2\right)\]It might help to look at the function like this,\[\large f(x)=\left(\cosh x^2\right)^2\]We'll have to apply the `chain rule` several times, and this might make it easier to identity the outermost function.
 one year ago

zepdrixBest ResponseYou've already chosen the best response.2
So we can see that the outermost function is the square, Taking the derivative gives us,\[\large f'(x)=2\left(\cosh x^2\right)\color{royalblue}{\left(\cosh x^2\right)'}\]We applied the power rule to the outermost function. The chain rule tells us that we have to multiply by the derivative of the inner function. The prime is to let us know that we still need to take the derivative of that part.
 one year ago

zepdrixBest ResponseYou've already chosen the best response.2
\[\large f'(x)=2\left(\cosh x^2\right)\color{royalblue}{\left(\sinh x^2\right)}\color{green}{(x^2)'}\]Hopefully you recall the derivative of cosh :) So this is what we get when we take the derivative of the blue term. It leaves us with chain rule once again.
 one year ago

zepdrixBest ResponseYou've already chosen the best response.2
Taking the derivative of the green term gives us, \[\large f'(x)=2\left(\cosh x^2\right)\color{royalblue}{\left(\sinh x^2\right)}\color{green}{(2x)}\] Since multiplication is commutative, we can move the pieces around freely, to make it look a little nicer.\[\large f'(x)=2(2x)\left(\cosh x^2\right)\left(\sinh x^2\right)\]Which simplifies to,\[\large f'(x)=4x \cosh \left(x^2\right)\sinh \left(x^2\right)\]
 one year ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.