A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 3 years ago
Find the solution of the differential equation
y'= 2x/(1+x^4) , such that y(0)=0
anonymous
 3 years ago
Find the solution of the differential equation y'= 2x/(1+x^4) , such that y(0)=0

This Question is Closed

Mimi_x3
 3 years ago
Best ResponseYou've already chosen the best response.5\[\frac{dy}{dx}=\frac{2x}{1+x^4}\] just integrate both sides i suppose..

Mimi_x3
 3 years ago
Best ResponseYou've already chosen the best response.5\[\int \frac{dy}{dx} = \int \frac{2x}{1+x^4}\]

anonymous
 3 years ago
Best ResponseYou've already chosen the best response.0if \[\Large u= 1 + x^4 \] then \[\Large \frac{du}{dx}=4x^3 \] How would you continue there? I am just curious, please don't misunderstand this, I know that there are plenty of ways to solve such an equation.

Mimi_x3
 3 years ago
Best ResponseYou've already chosen the best response.5I made a mistake.. trig substitution..or \(u=x^2\)

zugzwang
 3 years ago
Best ResponseYou've already chosen the best response.0\[\frac{dy}{dx}=\frac{2x}{1+x^4}\]\[dy=\frac{2x}{1+x^4}dx\]

zugzwang
 3 years ago
Best ResponseYou've already chosen the best response.0\[\int\limits_{}^{} dy=\int\limits_{}^{}\frac{2x}{1+x^4}dx\]
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.