Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

How do you evaluate the following integral analytically (no graphs, or calculators)?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\[\int\limits_{0}^{5}\left| (x^2-5x+4) \right| dx\]
Thanks! How did you get those 3 parts (this is kinda dumb, but sorry).
when you put x=1 the absolute value is positive when you put x=2 and three absolute value is negative (thats why i put - sign in front of second integral ) for x=4 and 5 absolute value is again positive .

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Isn't it 0 @ 1?
yes it is because at x=0 still abs (x^-5x+4) =(0-0+4)=4 positive .
Should the second integral be from 1 to 4 instead of 1 to 3, and the third integral be from 4 to 5?
at x=1 yes zero .
so the second integral should be from 1 to 4, and the 3rd one 4 to 5?
sorry i wrote it wrong . you are right first from 0..1 second from 1..4 and third from 4..5
\[\Large \int\limits_{0}^{1} (x^2-5x+4)dx-\int\limits_{1}^{4} (x^2-5x+4)dx+\int\limits_{4}^{5}(x^2-5x+4)dx\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question