question on how to solve this integration by quadratics

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

question on how to solve this integration by quadratics

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1360167916055:dw|
can u complete the square in denominator ?
can you solve it using quadratics technique or would you do it using partial

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\(x^2-2x+2= (x-....)^2+...^2\)
when i tried quadratic equation i got (x-4)(x-2) which wouldnt work
ah (x-1)^2 would work too
(x-4)(x-2) ??? how ?
(x-1)^2 + 1^2 would work right
my bad what i meant was (x+2)(x-4)
but then you cant square it to use the quadratic stuff
(x-1)^2 + 1^2 would work right \(\checkmark \)
i think i got it from here i forgot you could split + 2 into another piece
put u = x-1 and use the standard formula for 1/ (x^2+a^2)
i had my mindset on adding stuff to make it right

Not the answer you are looking for?

Search for more explanations.

Ask your own question