ksaimouli
  • ksaimouli
integral
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ksaimouli
  • ksaimouli
|dw:1360188674673:dw|
ksaimouli
  • ksaimouli
@JamesJ
ksaimouli
  • ksaimouli
|dw:1360189814146:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\text{The} \text{ derivative} \text{ of } 5^{x } \text { is}: \]\[5^x\text{ Log}[5] \]
ksaimouli
  • ksaimouli
not sure i can do this because (5^x) (ln5) separate
amoodarya
  • amoodarya
use u=5^x
ksaimouli
  • ksaimouli
then integral of u is (5^x)/ln5 right
ksaimouli
  • ksaimouli
|dw:1360189966266:dw|
ksaimouli
  • ksaimouli
if i use u substitution ln5 goes to top so no use
anonymous
  • anonymous
\[\Large \int 5^x\ln 5 dx \] ?? yes `
ksaimouli
  • ksaimouli
yes
anonymous
  • anonymous
\[\Large \ln 5 \int 5^xdx = \ln 5 \int e^{\ln5x}dx \]
anonymous
  • anonymous
If I understand the integral correctly.
anonymous
  • anonymous
Just rewrite the number 5 as e^ln5 and then you have a regular exponential function (linear) you can substitute and evaluate.
ksaimouli
  • ksaimouli
can u really do that manuplation
anonymous
  • anonymous
Of course, here's the proof: \[\Large a^b=c \\ \\ \Large b\log_aa= \log_ac\]that leads to : \[\Large b=\log_ac \] And back substitution gives: \[\Large a^{\log_ac}=c \] Just a different way of writing numbers, that's also the reason why a lot of people write the exponential decay with as an e function, rather then the regular y(t)=ba^t form
anonymous
  • anonymous
Integration result gives you \[\Large e^{\ln5 x}+C \] Deriving with respect to x: \[\Large \ln5 \cdot e^{\ln 5 x} = \ln 5 \cdot \left(e^{\ln5} \right)^x = \ln5 \cdot 5^x\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.