Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
|dw:1360188674673:dw|
|dw:1360189814146:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\text{The} \text{ derivative} \text{ of } 5^{x } \text { is}: \]\[5^x\text{ Log}[5] \]
not sure i can do this because (5^x) (ln5) separate
use u=5^x
then integral of u is (5^x)/ln5 right
|dw:1360189966266:dw|
if i use u substitution ln5 goes to top so no use
\[\Large \int 5^x\ln 5 dx \] ?? yes `
yes
\[\Large \ln 5 \int 5^xdx = \ln 5 \int e^{\ln5x}dx \]
If I understand the integral correctly.
Just rewrite the number 5 as e^ln5 and then you have a regular exponential function (linear) you can substitute and evaluate.
can u really do that manuplation
Of course, here's the proof: \[\Large a^b=c \\ \\ \Large b\log_aa= \log_ac\]that leads to : \[\Large b=\log_ac \] And back substitution gives: \[\Large a^{\log_ac}=c \] Just a different way of writing numbers, that's also the reason why a lot of people write the exponential decay with as an e function, rather then the regular y(t)=ba^t form
Integration result gives you \[\Large e^{\ln5 x}+C \] Deriving with respect to x: \[\Large \ln5 \cdot e^{\ln 5 x} = \ln 5 \cdot \left(e^{\ln5} \right)^x = \ln5 \cdot 5^x\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question