anonymous
  • anonymous
Find the indefinite integral:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{?}^{?}\frac{ e^{y} }{ 2-e^{y} } dy\]
anonymous
  • anonymous
i know i'll be using substitution.
TuringTest
  • TuringTest
Let\[u=2-e^y\]then\[du=?\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
e^y y dy?
TuringTest
  • TuringTest
\[u=2-e^y\implies du=-e^ydy\implies e^ydy=-du\]so what is the integral now?
anonymous
  • anonymous
\[\int\limits_{?}^{?} 1/du du\]
anonymous
  • anonymous
well minus?
TuringTest
  • TuringTest
how did you get two du's ?
anonymous
  • anonymous
\[\int\limits_{e^y}}^{2-e^{y}} e^{\]
anonymous
  • anonymous
\[\int\limits_{}^{} \frac{ e^{y} }{ 2-e{y} } e^{y}\]
TuringTest
  • TuringTest
where is the other e^y coming from?
anonymous
  • anonymous
thats my du.
anonymous
  • anonymous
well dy.
anonymous
  • anonymous
it should be negative.
anonymous
  • anonymous
is the answer ln|2-e^y|+c?
TuringTest
  • TuringTest
you dropped the negative sign, but aside from that the answer is correct

Looking for something else?

Not the answer you are looking for? Search for more explanations.