Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

mathlife Group Title

4. Let A ∈ F^m×n . Show that if y ∈ F^1×n is in the row space of A and x ∈ F^n×1 is in the null space of A, then yx = 0

  • one year ago
  • one year ago

  • This Question is Closed
  1. KingGeorge Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    Well, if \(x\in \ker(A)\) (\(\ker(A)\) is the null space), then \(Ax=0\). Let \(A=(\vec{a_1},\vec{a_2},...,\vec{a_n})\) where each \(\vec{a_n}\) is the \(n\)-th row vector. Since \(y\) is in the row space of A, we can say that \[y=r_1\vec{a_1}+...+r_n\vec{a_n}\]for some \(r_1,...,r_n\in F\).Then. \[yx=r1\vec{a_1}x+...+r_n\vec{a_n}x.\]Since \(Ax=0\), \(\vec{a_j}x=0\) for all \(1\le j\le n\), we can conclude that \(yx=0\). Did this make sense?

    • one year ago
  2. mathlife Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Thanks so much

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.