Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing
mathlife
Group Title
4. Let A ∈ F^m×n
. Show that if y ∈ F^1×n
is in the row space of A and
x ∈ F^n×1
is in the null space of A, then yx = 0
 one year ago
 one year ago
mathlife Group Title
4. Let A ∈ F^m×n . Show that if y ∈ F^1×n is in the row space of A and x ∈ F^n×1 is in the null space of A, then yx = 0
 one year ago
 one year ago

This Question is Closed

KingGeorge Group TitleBest ResponseYou've already chosen the best response.1
Well, if \(x\in \ker(A)\) (\(\ker(A)\) is the null space), then \(Ax=0\). Let \(A=(\vec{a_1},\vec{a_2},...,\vec{a_n})\) where each \(\vec{a_n}\) is the \(n\)th row vector. Since \(y\) is in the row space of A, we can say that \[y=r_1\vec{a_1}+...+r_n\vec{a_n}\]for some \(r_1,...,r_n\in F\).Then. \[yx=r1\vec{a_1}x+...+r_n\vec{a_n}x.\]Since \(Ax=0\), \(\vec{a_j}x=0\) for all \(1\le j\le n\), we can conclude that \(yx=0\). Did this make sense?
 one year ago

mathlife Group TitleBest ResponseYou've already chosen the best response.0
Thanks so much
 one year ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.