integral problem. i have seen one solution in full. Maybe i can get another solution here.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

integral problem. i have seen one solution in full. Maybe i can get another solution here.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\Large \int \frac{x}{\sqrt{x^2+x+1}}dx  \]?
\[\Large \int \frac{\mathrm dx}{x\sqrt{x^2+x+1}}\]
ah, I see.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

This integral is frustrating...
\[\Huge \checkmark \]
What did you try @TuringTest, completing the square and then a trig substitution?
That's what I did, and I did end up with an integral that is optically neater, integration wise still as bad
yep, exactly. then I wound up with\[2\int\frac{\sec\theta d\theta}{\sqrt3\tan\theta-1}\]at which point I'm stuck
From there I tried some difference of squares voodoo, but that only serves to complicate things it seems :p
it's the same solution i had. \[2\frac{\sec \theta}{\sqrt 3 \tan \theta -1}=\frac{1}{\tfrac{\sqrt 3}{2} \sin \theta -\tfrac{1}{2}\cos \theta}=\frac{1}{\sin(\theta-\pi/6)}\] which can be integrated easily but the return to the variable \(x\) is the frustrating part.
this might work ... http://en.wikipedia.org/wiki/Euler_substitution this is uglier than weirstrass substitution.
i found another solution. \[\frac{1}{x\sqrt{x^2+x+1}}=\frac{1}{\displaystyle x^2\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}}=\frac{1}{\displaystyle x^2\sqrt{\left(\frac{\sqrt 3}{2}\right)^2+\left(\frac{1}{2}+\frac{1}{x}\right)^2}}\] let \[y=\frac{1}{2} + \frac{1}{x}\\\mathrm dy=-\frac{1}{x^2}\mathrm dx\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question