anonymous
  • anonymous
@JamesJ,@TuringTest can you explain me this
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
1 Attachment
TuringTest
  • TuringTest
What part do you not understand?
anonymous
  • anonymous
I meant ds

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

TuringTest
  • TuringTest
\[x=r\cos\theta\]\[y=r\sin\theta\]\[z=z\]Then you need the Jacobian of the transformation... or you can just memorize that when switching to cylindrical or polar coordinates you pick up an extra r in the differential.
TuringTest
  • TuringTest
check out example 2: http://tutorial.math.lamar.edu/Classes/CalcIII/ChangeOfVariables.aspx try the same trick for cylindrical coordinates and you will find that you get the same thing i.e. the extra r

Looking for something else?

Not the answer you are looking for? Search for more explanations.