Question help please

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Question help please

Calculus1
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
a) You can see that 0 ≤ t ≤ 40, so dividing this interval into four sub-intervals isn't too difficult. You get the following four intervals: \[[0,10], [10,20], [20,30], [30,40].\] So, the length of each sub-interval is 10. The midpoints of these intervals are 5, 15, 25, and 35, respectively. \[\int_0^{40}v(t)\;dt\approx\frac{1}{10}\left(v(5)+v(15)+v(25)+v(35)\right)\]
How do I do b c d?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

b) Here you have to look for when v(t) is increasing and decreasing. I presume you know about the first derivative test, and that acceleration, a(t), is the derivative of velocity, v(t). When a(t) < 0, v(t) is decreasing; when a(t) > 0, v(t) is increasing. So, when velocity changes from increasing to decreasing (or decreasing to increasing), this would indicate a(t) = 0 at some t. For example, one instance in this situation is over [0,15]. Over [0,10], it looks like v(t) is increasing (in general; it's completely possible that velocity is oscillating), but when t = 15, v(t) drops down from 9.5 to 7.0 mpm. The increase-decrease indicates at least one instance of zero acceleration. If you take a look at the tick marks on the table, it looks like someone has already pointed out where the sign changes of v(t) occur.
c) Velocity is given by the function \[f(t) = 6+\cos{\frac{t}{10}}+\sin{\frac{7t}{40}}.\] To find the acceleration at t = 23, you must find f '(23), since f '(t) = a(t).
d) If f(t) is a velocity function, then average velocity over [a,b] would be given by \[v_{avg} = \frac{f(b)-f(a)}{b-a}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question