Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

What's wrong with this infinite square well?

Physics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
|dw:1360436634776:dw|\[φ''=-\frac{2mE}{ℏ^2} φ\] \[ \varphi= A \sin(\frac{\sqrt{2mE}}{ℏ}x)\] \[\varphi(a)=\varphi(-a)=0\] \[ \pm\frac{\sqrt{2mE}}{ℏ}a=n \pi\] \[ \frac{\sqrt{2mE}}{ℏ}=\pm\frac{n \pi}{a}\] \[\lambda= \frac{2 \pi}{\pm\frac{n \pi}{a}}=\pm\frac{2a}{n}\] Which, for n=1, is shorter than the real ground-state lavelength (4a). What have I done incorrectly?
You haven't written down the correct general solution. You can also have terms \[ ... + B \cos(\omega x) \] with \( \omega = \sqrt{2mE}/\hbar \).
This will give you the 4a, as cos(omega.x) = 0 => omega.x = pi/2 +- n.pi

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Aren't you assuming A=0 for that solution? \[Asin(\pi/2 \pm n\pi) \ne 0\]
The general solution of y '' + w^2.y = 0 is y(x) = A.sin(wx) + B.cos(wx) or y(x) = A.cos(wx + phi0) Either way, there are two parameters. You are applying one of the boundary conditions. You actually are going to apply another boundary condition to y'(x) in order to completely nail down the solution.
Alternatively, the two conditions you are using phi(-a) = 0, phi(a) = 0. From this, you get two families of solutions. One with sin, the other with cos. This equivalent to using the second general solution with the phi0 alternating between 0 and pi/2
Ah, that's it! Thanks. What are the boundary conditions? That \[\varphi'(-a)=\varphi(a)=0\] Because \[\varphi(x)=0\] for \[x>a, x<-a\]?
*\[\varphi'(a)=\varphi'(-a)=0\]
That guess came from avoiding making the first derivative jump about at +- a
You have two conditions, which solving for the two parameters in the general solution. I recommend you start with A.cos(wx + phi0) and you'll get what you want.
\[A \sin( \omega a)+B \cos( \omega a)\] It is harder to make this expression = 0 in this form than yours, as both summands cannot be made = 0 or the negative of the other by eyeballing it, so yours is simpler. Thanks, I think I've got it.
@JamesJ , sorry to tag you, but I have a (very) brief question: the general solution is \[ \varphi= A e^{\pm i \omega x}\] What is done with \[\Im(\varphi)\]? Is only the real part considered, as is often done in classical mechanics? Thanks again

Not the answer you are looking for?

Search for more explanations.

Ask your own question