richyw
  • richyw
show that f is continuous at every point, \(a\in\mathbb{R}\)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
richyw
  • richyw
\[f(x)=x\sin{\left(\frac{1}{x}\right)} \text{ if } x\neq0\]\[f(0)=0\]
richyw
  • richyw
my textbook shows that\[\lim_{x\rightarrow 0}x\sin{\left(\frac{1}{x}\right)=0}\]because\[\left|x\sin{\left(\frac{1}{x}\right)}\right|\leq|x|\]
klimenkov
  • klimenkov
The function is continious in point \(x_0\) if \(\lim \limits_{x\rightarrow x_0}f(x)=f(x_0)\). You need to show that the function is continious in the point \(x=0\).

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

richyw
  • richyw
I don't understand how this shows that the limit is zero?
richyw
  • richyw
I mean it's clear that this inequality holds to me. but it's unclear to me how this finds the limit.
klimenkov
  • klimenkov
Think about it. If \(\left|x\sin{\left(\frac{1}{x}\right)}\right|\leq|x|\) and \(x\rightarrow0\), so \(|x|\) is very little, and then \(\left|x\sin{\left(\frac{1}{x}\right)}\right| \) is little too!
richyw
  • richyw
ah, perfect. I get it now. so now because the limits exist, and f(0) is defined, and the limit= f(0), that should be satisfactory to show that the function is cts right?
klimenkov
  • klimenkov
Yes. That is right.
richyw
  • richyw
thank you so much
klimenkov
  • klimenkov
You are welcome.

Looking for something else?

Not the answer you are looking for? Search for more explanations.