anonymous
  • anonymous
integral: are these two expressions equal?
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
integral: are these two expressions equal?
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\int\limits_{0}^{a}f(a-x)dx = \int\limits_{}^{}f(0)dx-\int\limits_{}^{}f(a)dx = \int\limits_{a}^{0}f(x)dx\]
klimenkov
  • klimenkov
You can check this on example. Try \(f(x)=x^2, a=1.\)
klimenkov
  • klimenkov
It will more easy if you take \(f(x)=1\).

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so it this whole expression correct?
sirm3d
  • sirm3d
only the first and last expressions can be equated.
anonymous
  • anonymous
actually, the first and last aren't equal. But what's wrong in the expression?
klimenkov
  • klimenkov
\[\int\limits_{0}^{a}f(a-x)dx \ne \int\limits_{}^{}f(0)dx-\int\limits_{}^{}f(a)dx = \int\limits_{a}^{0}f(x)dx\]The primitive of \(f(a-x)\) is \(-\int f(a-x)dx\) and not \(\int f(a-x)dx\). You can check this by taking derivative. Now, I think you can answer your question by yourself.

Looking for something else?

Not the answer you are looking for? Search for more explanations.