anonymous
  • anonymous
I'm having trouble cancelling out my units. \[(N \cdot \cancel{m^2}/\cancel{C^2)}\left[\frac{\cancel{C}}{\cancel{m}^2}+\frac{\cancel{C}}{\cancel{m}^2}\right]\] I've N left, but I should have N/C
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jtvatsim
  • jtvatsim
\[N \cdot \cancel{m^2}/\cancel{C^2)}\left[\frac{\cancel{C}}{\cancel{m}^2}+\frac{\cancel{C}}{\cancel{m}^2}\right]\]
jtvatsim
  • jtvatsim
Just reposting the question :)
anonymous
  • anonymous
@phi

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
nevermind I think I see my mistake, C^2 doesn't cancel out C
klimenkov
  • klimenkov
Very nice. You solved your own problem by yourself.
klimenkov
  • klimenkov
But where is 2 in the numerator?
anonymous
  • anonymous
2 in the numerator?
anonymous
  • anonymous
m^2
klimenkov
  • klimenkov
\(\frac{C}{m^2}+\frac{C}{m^2}=\frac{2C}{m^2}\)
anonymous
  • anonymous
The m's are different, I can't add them. \[8.99\times10^9N\cdot m^2/C^2\left[\frac{(-5\times10^{-6}C)}{(0.11m)^2}+\frac{(5\times10^-6C)}{(0.09m)^2}\right]\]
anonymous
  • anonymous
I just needed to cancel my units out to make sure I'm doing the calculations correctly, because the answer is supposed to be in N/C
anonymous
  • anonymous
\[\vec{E}=N/C\]
klimenkov
  • klimenkov
Ah, i understood, that is ok.

Looking for something else?

Not the answer you are looking for? Search for more explanations.