anonymous
  • anonymous
find the derivative of y with respect to x, t or theta. (a) e^7 - 10x Answer: -10e^7-10x (b) 8xe^x - 8e^x answer: 8xe^x (c) y= (x^2 -2x+4)e^x answer: (x^2+2)e^x (d) y= sin e^theta^4 answer: (-4theta^3 e^-theta^4) cos e^-theta^4 please show the steps. thank you
OCW Scholar - Single Variable Calculus
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Ok It took me a while to understand your questions so here's how I saw them: a. \[f(x)=e^{7-10x}\] \[f'(x) = e ^{7-10x}\times \frac{ d(7-10x) }{ dx }\] (Chain Rule) Derivative of 7 - 10x = -10 so it comes out to the desired answer. b. Ok for this, I just took the 8 out, because it makes it much easier to look at. \[y=xe^{x}-e^{x}\] Derivative of e^x is simply e^x. Derivative of \[xe^{x}\] = \[e^{x}+xe^{x}\] (Product Rule) the e^x's cancel out and we are left with the desired answer.
anonymous
  • anonymous
C. \[f(x) = (x^{2}-2x+4)e^{x}\] Uhh this is also product rule so you get: \[(2x-2)e^{x}+e^{x}(x^{2}-2x+4)\] Expanding this out you get:\[2xe^{x}-2e^{x} + e^{x}x^{2}-e^{x}2x + 4e^{x}\] Terms cancel and you are then left with the desired answer.

Looking for something else?

Not the answer you are looking for? Search for more explanations.