Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

whats the integral of sin x^(3) 3x^(2)?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1/36 (-81 (x^2-2) cos(x)+(9 x^2-2) cos(3 x)-6 x (sin(3 x)-27 sin(x)))+C
i know i have to use u du = -cos u +c, but dont know how to do it step by step :/
LEt x^3 = u see if it works ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

-cos(x)^(3) + C is that correct?
but what happened with du (which equals to 3x^2 ) ?
make the function as 3x^2* sinx^3
factor out 3
do u know trig identities of sin^2 X??
separate sin^3x into Sin^2x Sinx
its now become 3Integral X^2(sinX)(1/2(1-cos2x)dx
convert that into 3/2 int x^2(sinx)(1-cos2x)dx
Use the trigonometric identity sin(a) cos(b) 3/2 integral x^2 sin(x)dx - 3/4 integral x^2 (sin(3 x)-sin(x)) dx
its become 3/2 integral x^2 sin(x) dx - 3/4integral (x^2 sin(3 x)-x^2 sin(x)) dx
Integrate the sum term by term and factor out constants: = 3/4 integral x^2 sin(x) dx-3/4 integral x^2 sin(3 x) dx+3/2 integral x^2 sin(x) dx
im just gonna write it out what i do next.. just copy in out then u'll see
1/4 x^2 cos(3 x)+3/2 integral x^2 sin(x) dx+3/4 integral x^2 sin(x) dx-1/2 integral x cos(3 x) dx
= 1/4 x^2 cos(3 x)+3/2 integral x^2 sin(x) dx+3/4 integral x^2 sin(x) dx-1/6 x sin(3 x)+1/6 integral sin(3 x) dx
= 1/18 integral sin(u) du+1/4 x^2 cos(3 x)+3/2 integral x^2 sin(x) dx+3/4 integral x^2 sin(x) dx-1/6 x sin(3 x)
1/18 integral sin(u) du-3/4 x^2 cos(x)+1/4 x^2 cos(3 x)+3/2 integral x^2 sin(x) dx-1/6 x sin(3 x)+3/2 integral x cos(x) dx
1/18 integral sin(u) du-3/4 x^2 cos(x)+1/4 x^2 cos(3 x)+3/2 integral x^2 sin(x) dx+3/2 x sin(x)-1/6 x sin(3 x)-3/2 integral sin(x) dx
= -(cos(u))/18-1/4 (3 x^2 cos(x))+1/4 x^2 cos(3 x)+3/2 integral x^2 sin(x) dx+3/2 x sin(x)-1/6 x sin(3 x)-3/2 integral sin(x) dx = -(cos(u))/18-3/4 x^2 cos(x)+1/4 x^2 cos(3 x)+3/2 integral x^2 sin(x) dx+3/2 x sin(x)-1/6 x sin(3 x)+(3 cos(x))/2 = -(cos(u))/18-9/4 x^2 cos(x)+1/4 x^2 cos(3 x)+3/2 x sin(x)-1/6 x sin(3 x)+(3 cos(x))/2+3 integral x cos(x) dx = -(cos(u))/18-9/4 x^2 cos(x)+1/4 x^2 cos(3 x)+9/2 x sin(x)-1/6 x sin(3 x)+(3 cos(x))/2-3 integral sin(x) dx The integral of sin(x) is -cos(x): = -(cos(u))/18-9/4 x^2 cos(x)+1/4 x^2 cos(3 x)+9/2 x sin(x)-1/6 x sin(3 x)+(9 cos(x))/2+constant Substitute back for u = 3 x: = -9/4 x^2 cos(x)+1/4 x^2 cos(3 x)+9/2 x sin(x)-1/6 x sin(3 x)+(9 cos(x))/2-1/18 cos(3 x)+constant Which is equal to: Answer: | | = 1/36 (-81 (x^2-2) cos(x)+(9 x^2-2) cos(3 x)-6 x (sin(3 x)-27 sin(x)))+constant
I happen to did this before so im pretty sure its right .. but good luck,, check it w ur teacher , but if it wrong then please dont kill me ^^
oh my gosh! what a long integral! thank you so much for help me out!, and be sure i wont kill u if its wrong :P :D ^^
^^ np
hmm, I did not read what you wrote but certainly no need for all that. after letting x^3 = u, => 3x^2 dx= du so integral becomes (sin u du) => -cos u + C =>-cos(x^3) + C as simple as that.

Not the answer you are looking for?

Search for more explanations.

Ask your own question