chihiroasleaf
  • chihiroasleaf
[Partial Differential Equation] solve the following boundary value problems \[ \LARGE \frac{\partial^{2} u}{\partial x \partial y} \left( x,y \right) = 0 , u(x,0) = \sin x , u(0,y) = y \]
Differential Equations
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

chihiroasleaf
  • chihiroasleaf
[Partial Differential Equation] solve the following boundary value problems \[ \LARGE \frac{\partial^{2} u}{\partial x \partial y} \left( x,y \right) = 0 \] \[ \LARGE \frac{\partial}{\partial x } \left( \frac{\partial u}{\partial y } \left( x,y \right) \right)= 0 \] integrate with respect to \(x\) yields \[ \LARGE \frac{\partial u}{\partial y } \left( x,y \right)= f(y) \] integrate with respect to \(y\) yields \( \LARGE u( x,y )= F(y) + g(x) \) with \[ \LARGE \frac{\partial }{\partial y } F(y) = f(y) \] is this correct? what's next?
klimenkov
  • klimenkov
Now put your boundary conditions into the expression for \(u(x,y)\).
chihiroasleaf
  • chihiroasleaf
$$u(x,0) = \sin{x} \implies g(x) + F(0) = \sin{x} \implies g(x) = \sin{x} - F(0) $$ $$u(0,y) = y \implies g(0) + F(y) = y \implies F(y) = y- g(0) $$ $$u(x,y) = F(y) + g(x) = y - g(0) + \sin{x} - F(0) $$ like this? what should I do with \(F(0) \) and \(g(0) \) ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

klimenkov
  • klimenkov
\(u(x,0)=\sin x=\sin x-g(0)-F(0)\) \(u(0,y)=y=y-g(0)-F(0)\) \(g(0)=-F(0)\) If you put this into the expression for \(u(x,y)\) you will get \(u(x,y)=\sin x+y\)
chihiroasleaf
  • chihiroasleaf
the third line.., you get \( g(0) = -F(0) \) from \( -g(0) - F(0) = 0\) right? don't we need to change \( -g(0) - F(0) \) become \(C\) (constant) ? There usually the 'C' part in the general solution..
klimenkov
  • klimenkov
As you can see, \(C\) will not do. If we let \(-g(0)-F(0)=C\), then \(u(x,y)=\sin x+y+C\). Now check your boundary conditions again: \(u(0,y)=y+C\) It will satisfy only if \(C=0\).
klimenkov
  • klimenkov
You have enough conditions to find the definite solution.
chihiroasleaf
  • chihiroasleaf
ah.., I see.. :) my other question, do you get \( g(0) = -F(0)\) from \( -g(0) - F(0) = 0 \) ?
klimenkov
  • klimenkov
Yes.
chihiroasleaf
  • chihiroasleaf
ok..., thank you... :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.